Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy
نویسندگان
چکیده
The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE.
منابع مشابه
Particle radiation therapy using proton and heavier ion beams.
Particle beams like protons and heavier ions offer improved dose distributions compared with photon (also called x-ray) beams and thus enable dose escalation within the tumor while sparing normal tissues. Although protons have a biologic effectiveness comparable to photons, ions, because they are heavier than protons, provide a higher biologic effectiveness. Recent technologic developments in t...
متن کاملDevelopment of improved radiation therapy techniques using narrow scanned photon beams
The present thesis is focused on the development and application of narrow scanned high energy photon beams for radiation therapy. The introduction of physically and biologically optimized intensity modulated radiation therapy (IMRT) requires a flexible and accurate dose delivery method to maximize the treatment outcome. Narrow scanned photon beams is a fast option for IMRT since it is not depe...
متن کاملNext generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams
The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon...
متن کاملNanodosimetry-Based Plan Optimization for Particle Therapy
Treatment planning for particle therapy is currently an active field of research due uncertainty in how to modify physical dose in order to create a uniform biological dose response in the target. A novel treatment plan optimization strategy based on measurable nanodosimetric quantities rather than biophysical models is proposed in this work. Simplified proton and carbon treatment plans were si...
متن کاملMicrodosimetric relative biological effectiveness of therapeutic proton beams.
When compared to photon beams, particle beams have distinct spatial distributions on the energy depositions in both the macroscopic and microscopic volumes. In a macroscopic volume, the absorbed dose distribution shows a rapid increase near the particle range, that is, Bragg peak, as particle penetrates deep inside the tissue. In a microscopic volume, individual particle deposits its energy alo...
متن کامل